AutoriSantabarbara S.; Bullock B.; Rappaport F.; Redding K.E.
AbstractTwo functional electron transfer (ET) chains, related by a pseudo-C-2 symmetry, are present in the reaction center of photosystem I (PSI). Due to slight differences in the environment around the cofactors of the two branches, there are differences in both the kinetics of ET and the proportion of ET that occurs on the two branches. The strongest evidence that this is indeed the case relied on the observation that the oxidation rates of the reduced phylloquinone (PhQ) cofactor differ by an order of magnitude. Site-directed mutagenesis of residues involved in the respective PhQ-binding sites resulted in a specific alteration of the rates of semiquinone oxidation. Here, we show that the PsaA-F689N mutation results in an similar to 100-fold decrease in the observed rate of PhQ(A)(-) oxidation. This is the largest change of PhQ(A)(-) oxidation kinetics observed so far for a single-point mutation, resulting in a lifetime that exceeds that of the terminal electron donor, P-700(+). This situation allows a second photochemical charge separation event to be initiated before PhQ(A)(-) has decayed, thereby mimicking in PSI a situation that occurs in type II reaction centers. The results indicate that the presence of PhQ(A)(-) does not impact the overall quantum yield and leads to an almost complete redistribution of the fractional utilization of the two functional ET chains, in favor of the one that does not bear the charged species. The evolutionary implications of these results are also briefly discussed.
RivistaBiophysical Journal (online)
Impact factor0
Pagina inizio1537
Pagina fine1547
Linee di Ricerca IBFMD.P01.005.001