AutoriScarfì S, Fresia C, Ferraris C, Bruzzone S, Fruscione F, Usai C, Benvenuto F, Magnone M, Podestà M, Sturla L, Guida L, Albanesi E, Damonte G, Salis A, De Flora A, Zocchi E
AbstractAbscisic acid (ABA) is a hormone involved in pivotal physiological functions in higher plants, such as response to abiotic stress and control of seed dormancy and germination. Recently, ABA was demonstrated to be autocrinally produced by human granulocytes, beta pancreatic cells, and mesenchymal stem cells (MSC) and to stimulate cell-specific functions through a signaling pathway involving the second messenger cyclic ADP-ribose (cADPR). Here we show that ABA expands human uncommitted hemopoietic progenitors (HP) in vitro, through a cADPR-mediated increase of the intracellular calcium concentration ([Ca(2+)](i)). Incubation of CD34(+) cells with micromolar ABA also induces transcriptional effects, which include NF-kappaB nuclear translocation and transcription of genes encoding for several cytokines. Human MSC stimulated with a lymphocyte-conditioned medium produce and release ABA at concentrations sufficient to exert growth-stimulatory effects on co-cultured CD34(+) cells, as demonstrated by the inhibition of colony growth in the presence of an anti-ABA monoclonal antibody. These results provide a remarkable example of conservation of a stress hormone and of its second messenger from plants to humans and identify ABA as a new hemopoietic growth factor involved in the cross-talk between HP and MSC.
RivistaStem Cells
Impact factor7.747
Pagina inizio2469
Pagina fine2477
Autori IBFCesare USAI
Linee di Ricerca IBFMD.P01.001.001