Anno2009
AutoriMiceli F, Soldovieri MV, Lugli L, Bellini G, Ambrosino P, Migliore M, del Giudice EM, Ferrari F, Pascotto A, Taglialatela M
AbstractBenign Familial Neonatal Seizures (BFNS) is a rare, autosomal-dominant epilepsy of the newborn caused by mutations in K(v)7.2 (KCNQ2) or K(v)7.3 (KCNQ3) genes encoding for neuronal potassium (K(+)) channel subunits. In this study, we describe a sporadic case of BFNS; the affected child carried heterozygous missense mutations in both K(v)7.2 (D212G) and K(v)7.3 (P574S) alleles. Electrophysiological experiments revealed that the K(v)7.2 D212G substitution, neutralizing a unique negatively-charged residue in the voltage sensor of K(v)7.2 subunits, altered channel gating, leading to a marked destabilization of the open state, a result consistent with structural analysis of the K(v)7.2 subunit, suggesting a possible pathogenetic role for BFNS of this K(v)7.2 mutation. By contrast, no significant functional changes appeared to be prompted by the K(v)7.3 P574S substitution. Computational modelling experiments in CA1 pyramidal cells revealed that the gating changes introduced by the K(v)7.2 D212G increased cell firing frequency, thereby triggering the neuronal hyperexcitability which underlies the observed neonatal epileptic condition.
RivistaNeurobiology Of Disease
ISSN0969-9961
Impact factor4.518
Volume34
Pagina inizio501
Pagina fine510
Autori IBFMichele MIGLIORE
Linee di Ricerca IBFMD.P01.004.001
Sedi IBFIBF.PA