Anno2009
AutoriCarzaniga T, Briani F, Zangrossi S, Merlino G, Marchi P, Dehò G
AbstractThe Escherichia coli polynucleotide phosphorylase (PNPase; encoded by pnp), a phosphorolytic exoribonuclease, posttranscriptionally regulates its own expression at the level of mRNA stability and translation. Its primary transcript is very efficiently processed by RNase III, an endonuclease that makes a staggered double-strand cleavage about in the middle of a long stem-loop in the 5'-untranslated region. The processed pnp mRNA is then rapidly degraded in a PNPase-dependent manner. Two non-mutually exclusive models have been proposed to explain PNPase autogenous regulation. The earlier one suggested that PNPase impedes translation of the RNase III-processed pnp mRNA, thus exposing the transcript to degradative pathways. More recently, this has been replaced by the current model, which maintains that PNPase would simply degrade the promoter proximal small RNA generated by the RNase III endonucleolytic cleavage, thus destroying the double-stranded structure at the 5' end that otherwise stabilizes the pnp mRNA. In our opinion, however, the first model was not completely ruled out. Moreover, the RNA decay pathway acting upon the pnp mRNA after disruption of the 5' double-stranded structure remained to be determined. Here we provide additional support to the current model and show that the RNase III-processed pnp mRNA devoid of the double-stranded structure at its 5' end is not translatable and is degraded by RNase E in a PNPase-independent manner. Thus, the role of PNPase in autoregulation is simply to remove, in concert with RNase III, the 5' fragment of the cleaved structure that both allows translation and prevents the RNase E-mediated PNPase-independent degradation of the pnp transcript.
RivistaJournal Of Bacteriology
ISSN0021-9193
Impact factor3.94
Volume191
Pagina inizio1738
Pagina fine1748
Autori IBFSandro ZANGROSSI
Linee di Ricerca IBFMD.P01.005.001
Sedi IBFIBF.MI