Anno2008
AutoriZifarelli G, Pusch M.
AbstractClC-1 belongs to the gene family of CLC Cl(-) channels and Cl(-)/H(+) antiporters. It is the major skeletal muscle chloride channel and is mutated in dominant and recessive myotonia. In addition to the membrane-embedded part, all mammalian CLC proteins possess a large cytoplasmic C-terminal domain that bears two so-called CBS (from cystathionine-beta-synthase) domains. Several studies indicate that these domains might be involved in nucleotide binding and regulation. In particular, Bennetts et al. (J. Biol. Chem. 2005. 280:32452-32458) reported that the voltage dependence of hClC-1 expressed in HEK cells is regulated by intracellular ATP and other nucleotides. Moreover, very recently, Bennetts et al. (J. Biol. Chem. 2007. 282:32780-32791) and Tseng et al. (J. Gen. Physiol. 2007. 130:217-221) reported that the ATP effect was enhanced by intracellular acidification. Here, we show that in striking contrast with these findings, human ClC-1, expressed in Xenopus oocytes and studied with the inside-out configuration of the patch-clamp technique, is completely insensitive to intracellular ATP at concentrations up to 10 mM, at neutral pH (pH 7.3) as well as at slightly acidic pH (pH 6.2). These results have implications for a general understanding of nucleotide regulation of CLC proteins and for the physiological role of ClC-1 in muscle excitation.
RivistaThe Journal Of General Physiology
ISSN0022-1295
Impact factor
Volume131
Pagina inizio109
Pagina fine116
Autori IBFMichael PUSCH
Linee di Ricerca IBFMD.P01.009.001