Year2010
AuthorsSato A, Gambale F, Dreyer I, Uozumi N
AbstractThe Arabidopsis thaliana K(+) channel KAT1 has been suggested to play a key role in the regulation of the aperture of stomatal pores on the surface of plant leaves. Calcium-dependent and calcium-independent signaling pathways are involved in abscisic acid-mediated regulation of guard cell turgidity. Although the activity of the KAT1 channel is thought to be regulated by calcium-dependent protein kinases, the effect of phosphorylation on KAT1 and the phosphorylated target sites remain elusive. Because it has been proposed that the phosphorylation recognition sequence of plant calcium-dependent protein kinases resembles that of animal protein kinases C, in this study, we used the Xenopus laevis oocyte protein kinase C to identify the target sites of calcium-dependent protein kinases. KAT1 expressed in Xenopus oocytes was inhibited by the protein kinase C activator phorbol 12-myristate 13-acetate. On the basis of an in silico search, we selected S/T-X-K/R motifs facing the cytosol, as it has been reported that protein kinase C and calcium-dependent protein kinase share a common consensus sequence. Mutagenesis analyses revealed that six Ser/Thr residues were responsible for the reduction in activity after phorbol 12-myristate 13-acetate application. Simultaneous mutation of the five residues located in the carboxyl-terminus region of KAT1 led to a K(+) channel mutant that was insensitive to protein kinase C. These results indicate that, in plant cells, a kinase analogous to protein kinase C might exist that may modulate KAT1 channel activity through calcium-dependent phosphorylation at some of the pinpointed residues in the cytosolic region of KAT1.
JournalFebs Journal
ISSN
Impact factor
Volume277
Start page2318
Last page2328
IBF AuthorsFranco GAMBALE
IBF Research AreasMD.P01.001.001
IBF DivisionsIBF.GE